Abstract

Phase and chemical compositions are crucial for properties of advanced ceramic materials. A study of the phase and chemical composition is nowadays limited to localized 2-dimensional methods and their sensitivity to local changes. Alumina as the most used ceramic material is often doped by MgO to prevent abnormal grain growth. The phase equilibrium of Al2O3 and MgO has been widely studied and discussed. However, the chemical composition of spinel (MgAl2O4) in three dimensions has never been described. Here we present a TOF-SIMS analysis of spinel in an alumina matrix, where chemical composition in 3D is demonstrated. The presented analytical method allows characterization of advanced ceramic materials in volume and study of grain formation and contamination in nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.