Abstract

Wireless sensor networks have a great impact on long time monitoring applications (environment monitoring, security surveillance, habitat monitoring etc.) but its potential is yet to be discovered, where it can be deployed in time critical situations when disaster happens. There is a significant gap between existing applications of sensor networks and the requirement of applications supporting rescue operations that involves the catastrophe of human lives. As we are dealing with the human lives here, we can't just rely on the localization schemes that depend upon the connectivity information (range-free) algorithms only. Further, rescue operations are carried out in highly noisy environments, so distance based (range-based) localization algorithms generate high error in distance measurements. An efficient algorithm is needed that can measure the location of the sensor nodes near to the living being or being attached to them in 3-D space with a high accuracy. To achieve such kind of accuracy a combination of both the strategies is required. Further, the algorithms should be efficient and less resource consuming for getting executed on sensor nodes with low processing power. This research proposes an algorithm which incorporates both the range-based and range- free strategies. Keywords - Wireless sensor network (WSN), Localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.