Abstract
Artificial perception, in the context of autonomous driving, is the process by which an intelligent system translates sensory data into an effective model of the environment surrounding a vehicle. In this paper, and considering data from a 3D-LIDAR mounted onboard an intelligent vehicle, a 3D perception system based on voxels and planes is proposed for ground modeling and obstacle detection in urban environments. The system, which incorporates time-dependent data, is composed of two main modules: (i) an effective ground surface estimation using a piecewise plane fitting algorithm and RANSAC-method, and (ii) a voxel-grid model for static and moving obstacles detection using discriminative analysis and ego-motion information. This perception system has direct application in safety systems for intelligent vehicles, particularly in collision avoidance and vulnerable road users detection, namely pedestrians and cyclists. Experiments, using point-cloud data from a Velodyne LIDAR and localization data from an Inertial Navigation System were conducted for both a quantitative and a qualitative assessment of the static/moving obstacle detection module and for the surface estimation approach. Reported results, from experiments using the KITTI database, demonstrate the applicability and efficiency of the proposed approach in urban scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.