Abstract
The complementary characteristics of active and passive depth sensing techniques motivate the fusion of the LiDAR sensor and stereo camera for improved depth perception. Instead of directly fusing estimated depths across LiDAR and stereo modalities, we take advantages of the stereo matching network with two enhanced techniques: Input Fusion and Conditional Cost Volume Normalization (CCVNorm) on the LiDAR information. The proposed framework is generic and closely integrated with the cost volume component that is commonly utilized in stereo matching neural networks. We experimentally verify the efficacy and robustness of our method on the KITTI Stereo and Depth Completion datasets, obtaining favorable performance against various fusion strategies. Moreover, we demonstrate that, with a hierarchical extension of CCVNorm, the proposed method brings only slight overhead to the stereo matching network in terms of computation time and model size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.