Abstract

This paper presents a multi-member automatic structural modeling (MASM) method for high-thrust deviation monitoring of prefabricated cable domes. Point cloud data generated by three-dimensional (3D) laser scanning were segmented into structural modules to effectively reduce the method's computational complexity. A multimember central shrinkage algorithm was developed for skeleton-point recognition. Subsequently, skeleton members were detected with sequentially identified joints, and the structural model of the cable dome was built. The MASM method was validated with respect to its 1) accuracy, ensuring a satisfactory signal-to-noise ratio, and 2) efficiency, ensuring competitive runtime. The use case of the cable-dome deviation monitoring was studied in detail. The proposed MASM method systematically evaluates prefabricated cable domes with multi-section members. This study enables high-fidelity analysis using a structural digital twin for predicting future structural performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.