Abstract

The practical application of shape-stable phase change composites (PCCs) is beneficial to thermal energy management and energy conservation due to their superior properties. A shape-stable PCC was fabricated by incorporating poly(ethylene glycol) (PEG) with biomass-based porous carbon that was produced via freeze-drying and carbonization using a low-cost and environmentally friendly fresh towel gourd. The towel gourd derived porous carbon with the characteristics of porosity, unique three-dimensional (3D) lamellar structure, and high specific surface area allowed a high encapsulation capacity (up to 94.5 wt %) for PEG. Structural morphologies, as well as the properties of latent heat storage, thermal reliability, thermal energy management, and thermal protection ability of the fabricated shape-stable PCC, were investigated. The micromorphologies revealed that PEG molecular chains were arranged in a 3D lamellar tissue structure. The shape-stable PCC demonstrated excellent thermal reliability and a high melting latent heat of ∼164.3 J/g. The analysis of infrared thermal images indicated that the shape-stable PCC exhibited remarkable strengths in thermal energy management. The result of the thermal insulation simulation experiment proved that the shape-stable PCC had superior thermal protection ability. This study provided an innovative strategy for the design and development of shape-stable PCCs for great potential in heat-insulating protective textiles, solar thermal energy storage, energy-saving buildings, and infrared stealth of military targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.