Abstract
Kidney segmentation is a key step in developing any noninvasive computer-aided diagnosis (CAD) system for early detection of acute renal rejection. This paper describes a new 3-D segmentation approach for the kidney from computed tomography (CT) images. The kidney borders are segmented from the surrounding abdominal tissues with a geometric deformable model guided by a special stochastic speed relationship. The latter accounts for a shape prior and appearance features in terms of voxel-wise image intensities and their pair-wise spatial interactions integrated into a two-level joint Markov-Gibbs random field (MGRF) model of the kidney and its background. The segmentation approach was evaluated on 21 CT data sets with available manual expert segmentation. The performance evaluation based on the receiver operating characteristic (ROC) and Dice similarity coefficient (DSC) between manually drawn and automatically segmented contours confirm the robustness and accuracy of the proposed segmentation approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.