Abstract

Graphitic carbon nitride (GCN) is an efficient visible-light-driven metal-free semiconductor with superior photocatalytic activity. However, the main drawbacks of GCN include lower adsorption capacity, poor reusability and recoverability. To address these drawbacks, kaolinite/g-C3N4-alginate beads were fabricated using a cross-linking method to remove brilliant green dye from wastewater via photocatalysis. The characterization studies proved the alginate's potential capability in altering photocatalyst bandgap (2.78 to 2.55 eV) and minimizing recombination of electron-hole pairs. Kaolinite/g-C3N4-alginate photocatalyst removed 97 % of brilliant green (10 mg/L) in 90 min under visible light irradiation. The superior performance of the kaolinite/g-C3N4-alginate beads was ascribed to its improved adsorption and effective utilization of visible light. The key advantages of kaolinite/g-C3N4-alginate beads were their quick recovery and extended reusability upto ten cycles. The sustainability metrics analysis of kaolinite/g-C3N4-alginate beads confirmed the environmental suitability and practicability in wastewater remediation. This study provides new insights into the low-cost and sustainable preparation of highly reusable g-C3N4-based photocatalysts for environmental remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call