Abstract

Following recent advances in SQUID technology, airborne full tensor magnetic gradiometry (FTMG) is emerging as a practical mineral exploration method that is intended to recover information about remanent magnetization. In this paper, we introduce 3D regularized inversion of FTMG data that recovers the total magnetization vector in each cell of the 3D earth model. If a priori information about the susceptibility or remanent magnetization is available, the 3D inversion can be constrained to recover the remanent magnetization vector. If a priori information is not available, it is possible to recover attributes of remanent magnetization such as the amplitude and angle of the magnetization vector relative to the inducing field. We present a case study for data acquired over a dyke swarm in South Africa that compares our 3D FTMG inversion for magnetization with a 3D total magnetic intensity (TMI) inversion for a positively-constrained susceptibility distribution. Given the significant remanent magnetization present, the 3D FTMG inversion for magnetization recovers results that are most consistent with the known geology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.