Abstract
Currently, the photo-Fenton oxidation has been increasingly studied in the domain of contaminant elimination. However, the lack of active sites and the slow charge migration in the catalytic process, still limit its practical application. 3D/0D hybrids offer a better opportunity for improving photo-Fenton activity due to their high charge mobility and increased number of catalytic sites, which is highly desirable but remains a large challenge. Herein, 3D interconnected porous g-C3N4 hybridized with Fe2O3 QDs (FCN) was developed and exhibited a porous structure and large specific areas. A large number of active sites and rapid charge separation/migration were achieved by the loading of ultrasmall Fe2O3 QDs on the surface of g-C3N4. Moreover, the high charge mobility of this material promoted the fast conversion of Fe3+ to Fe2+, resulting in the optimum synergistic effect between the photocatalytic and Fenton oxidation processes. Thus, the FCN catalysts exhibited excellent photo-Fenton oxidation activity towards the decomposition of organic contaminants (such as phenol, 2,4-dibromophenol, 2,4,6-trichlorophenol, rhodamine B and methyl orange). In addition, the roles of active species in the photo-Fenton oxidation reaction were also studied, and the results imply that the hydroxyl radicals played the most important role in the degradation of organic contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.