Abstract
AbstractThe increased incidences of pipe breaks worldwide are posing a serious threat to potable water security in urban communities. The consequences may involve water loss and service interruptions, compromised water quality, infrastructure disruptions, and loss of revenue. Thus, creating failure assessment models is quite crucial to sustain water distribution networks (WDNs) and to optimize maintenance spending. This research paper aims at developing an assessment framework for water systems, as well as modeling the failure phenomena toward sustainable management of underground infrastructure. The city of El Pedregal in Peru was chosen to exemplify the methodology of the research due to the rapid pace of urbanization and growing economic activities in the region, which make water infrastructure even more critical. The framework is based on the application of modeling techniques stemming from statistical regression analysis (RA) and 3D schematic representation. First, the influential factors that lead to the deterioration of the WDNs are determined. Second, the RA technique is leveraged to evaluate and model the failure rate through consecutive simulation operations and a 3D surface plot. Finally, the efficacy of the model is investigated using different performance metrics, in conjunction with a residual analysis scheme. The validation results revealed the robustness of the model with R‐squared (R2) and the sum of squares error (SSE) of 0.9767 and 0.0008, respectively. The developed model is a predictive tool that can be used by municipal engineers as a preemptive measure against future pipeline bursts or leaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Contemporary Water Research & Education
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.