Abstract

Topological defects are ubiquitous in physics and include crystallographic imperfections such as defects in condensed matter systems. Defects can determine many of the material's properties, thus providing novel opportunities for defect engineering. However, it is difficult to track buried defects and their interfaces in three dimensions with nanoscale resolution. Here, we report three-dimensional visualization of gold nanocrystal twin domains using Bragg coherent X-ray diffractive imaging in an aqueous environment. We capture the size and location of twin domains, which appear as voids in the Bragg electron density, in addition to a component of the strain field. Twin domains can interrupt the stacking order of the parent crystal, leading to a phase offset between the separated parent crystal pieces. We utilize this phase offset to estimate the roughness of the twin boundary. We measure the diffraction signal from the crystal twin and show its Bragg electron density fits into the parent crystal void. Defect imaging will likely facilitate improvement and rational design of nanostructured materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.