Abstract
ABSTRACTMost existing reservoir models are based on 2D outcrop studies; 3D aspects are inferred from correlation between wells, and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we have initiated a multidimensional characterization of reservoir analogues in the Cretaceous Ferron Sandstone in Utah. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of reservoir flow units, barriers and baffles at the outcrop. High‐resolution 2D and 3D ground‐penetrating radar (GPR) images extend these reservoir characteristics into 3D to allow the development of realistic 3D reservoir models. Models use geometric information from mapping and the GPR data, combined with petrophysical data from surface and cliff‐face outcrops, and laboratory analyses of outcrop and core samples.The site of the field work is Corbula Gulch, on the western flank of the San Rafael Swell, in east‐central Utah. The outcrop consists of an 8–17 m thick sandstone body which contains various sedimentary structures, such as cross‐bedding, inclined stratification and erosional surfaces, which range in scale from less than a metre to hundreds of metres. 3D depth migration of the common‐offset GPR data produces data volumes within which the inclined surfaces and erosional surfaces are visible. Correlation between fluid permeability, clay content, instantaneous frequency and instantaneous amplitude of the GPR data provides estimates of the 3D distribution of fluid permeability and clay content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.