Abstract
In this paper, we propose a new algorithm for partitioning human posture represented by 3D point clouds sampled from the surface of human body. The algorithm is formed as a constrained extension of the recently developed segmentation method, spectral clustering (SC). Two folds of merits are offered by the algorithm: (1) as a nonlinear method, it is able to deal with the situation that data (point cloud) are sampled from a manifold (the surface of human body) rather than the embedded entire 3D space; (2) by using constraints, it facilitates the integration of multiple similarities for human posture partitioning, and it also helps to reduce the limitations of spectral clustering. We show that the constrained spectral clustering (CSC) still can be solved by generalized eigen-decomposition. Experimental results confirm the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.