Abstract
Three-dimensional (3D) hierarchically porous nanostructures with controlled morphology and dimensionality represent one kind of important material and have received enormous attention for a series of applications. In this work, 3D hierarchically porous ZnO architectures were synthesized via an amino acid-assisted biomimetic hydrothermal method combined with subsequent calcination. First a basic zinc carbonate (BZC) precursor with a lamellar spherical morphology assembled by interconnected nanosheets was synthesized. By subsequent calcination, the as-obtained BZC precursor can be facilely transformed into porous ZnO with a large surface area of 193.7 m2/g, while maintaining its 3D hierarchical morphology. The 3D hierarchically porous ZnO superstructures are further employed as a support to load Au nanoparticles (AuNPs) to construct hybrid nanomaterials for chemical gas sensors. The AuNP-functionalized 3D hierarchically porous ZnO nanomaterials, combining the high surface accessibility of porous materials and catalytic activity of small AuNPs, demonstrated excellent sensor properties in terms of higher sensitivity and very fast response. Furthermore, it is expected this AuNP-functionalized 3D hierarchically porous nanostructure may provide a new pathway to develop advanced nanomaterials for applications like gas sensors, low temperature CO oxidation and photocatalysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.