Abstract

Ground-penetrating radar (GPR) is a standard geophysical technique used to image near-surface structures in sedimentary environments. In such environments, GPR data acquisition and processing are increasingly following 3D strategies. However, the processed GPR data volumes are typically still interpreted using selected 2D slices and manual concepts such as GPR facies analyses. In seismic volume interpretation, the application of (semi-)automated and reproducible approaches such as 3D attribute analyses as well as the production of attribute-based facies models are common practices today. In contrast, the field of 3D GPR attribute analyses and corresponding facies models is largely untapped. We have developed and applied a workflow to produce 3D attribute-based GPR facies models comprising the dominant sedimentary reflection patterns in a GPR volume, which images complex sandy structures on the dune island of Spiekeroog (Northern Germany). After presenting our field site and details regarding our data acquisition and processing, we calculate and filter 3D texture attributes to generate a database comprising the dominant texture features of our GPR data. Then, we perform a dimensionality reduction of this database to obtain meta texture attributes, which we analyze and integrate using composite imaging and (also considering additional geometric information) fuzzy c-means cluster analysis resulting in a classified GPR facies model. Considering our facies model and a corresponding GPR facies chart, we interpret our GPR data set in terms of near-surface sedimentary units, the corresponding depositional environments, and the recent formation history at our field site. Thus, we demonstrate the potential of our workflow, which represents a novel and clear strategy to perform a more objective and consistent interpretation of 3D GPR data collected across different sedimentary environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.