Abstract

Waste toner powders are considered as hazardous materials to human and living things, and should be properly recycled by many effective ways due to their fine particle sizes and complex components. In this paper, waste toner powders were used as raw materials to successfully synthesize three dimensions (3D) graphene oxide (GO) hydrogel by means of a one-pot chemical transformation based on the improved Hummers' method. The obtained 3D GO hydrogel has porous structure and abundant oxygen-containing functional groups because of the inherent 3D solid structure of waste toner powder and the strong oxidation process of the improved Hummers' method. Interestingly, the as-prepared 3D GO hydrogel with excellent adsorptive property could quickly remove Pb(II) ions (100 mg/L, removal efficiency of 96% and removal capacity of 144 mg/g) and methylene blue (50 mg/L, removal efficiency of 97% and removal capacity of 48 mg/g) from water, respectively. The preparation process of 3D GO hydrogel was simple and easy to operate, and the output can be moderately mass produced, thus it would provide a new and effective disposal way for the recycling and reusing of waste toner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call