Abstract

Graphene, a single-atom-thick monolayer of sp(2) carbon atoms perfectly arranged in a honeycomb lattice, is an emerging sensing material because of its extraordinary properties, such as exceptionally high specific surface area, electrical conductivity, and electrochemical potential window. In this study, we demonstrate that three-dimensional (3D), macroporous, highly conductive, and monolithic graphene foam synthesized by chemical vapor deposition represents a novel architecture for electrochemical electrodes. Being employed as an electrochemical sensor for detection of dopamine, 3D graphene electrode exhibits remarkable sensitivity (619.6 μA mM(-1) cm(-2)) and lower detection limit (25 nM at a signal-to-noise ratio of 5.6), with linear response up to ∼25 μM. And the oxidation peak of dopamine can be easily distinguished from that of uric acid - a common interferent to dopamine detection. We envision that the graphene foam provides a promising platform for the development of electrochemical sensors as well as other applications, such as energy storage and conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.