Abstract
Positron emission tomography and computed tomography (PET-CT) dual-modality imaging provides critical diagnostic information in modern cancer diagnosis and therapy. Automated accurate tumor delineation is essentially important in computer-assisted tumor reading and interpretation based on PET-CT. In this paper, we propose a novel approach for the segmentation of lung tumors that combines the powerful fully convolutional networks (FCN) based semantic segmentation framework (3D-UNet) and the graph cut based co-segmentation model. First, two separate deep UNets are trained on PET and CT, separately, to learn high level discriminative features to generate tumor/non-tumor masks and probability maps for PET and CT images. Then, the two probability maps on PET and CT are further simultaneously employed in a graph cut based co-segmentation model to produce the final tumor segmentation results. Comparative experiments on 32 PET-CT scans of lung cancer patients demonstrate the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. IEEE International Symposium on Biomedical Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.