Abstract

Automatically delineating Organs-at-Risks (OARs) on computed tomography (CT) has the benefit of both reducing the time and improving the quality of radiotherapy (RT) planning. A 3D convolutional deep learning framework for multi-organs segmentation is proposed in this work; moreover, for the small volume OARs, a robust 3D squeeze-and-excitation (SE) feature extraction mechanism and a new Dice loss function are incorporated in the traditional 3D U-Net. We collected 60 thorax CT images set with annotations and expanded to 260 patients by the augmented method of randomly rotating [Formula: see text]6 degrees with a 1/3 probability and adding Gaussian noise. The objective is to segment five important organs: esophagus, spinal cord, heart, and bilateral lungs. Compared with 3D U-Net, 3D-2D U-Net proposed in our work increases the Dice similarity coefficient by 5% on average for the heart and bilateral lungs, and 3D Small Volume U-Net can further increase the Dice similarity coefficient to above 80% for the spinal cord. The experiment results demonstrate that the proposed model can improve the delineation accuracy of OARs from CT images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.