Abstract

A numerical method to study three-dimensional (3D) contact problems in solids with anisotropic elastic behavior is developed in this work. This formulation is based on the Boundary Element Method (BEM) for computing the elastic influence coefficients and on projection functions over the augmented Lagrangian for contact restrictions fulfillment. The constitutive equations of the potential contact zone are Signorini’s contact conditions and Coulomb’s law of friction. The formulation uses a recently introduced explicit approach for fundamental solutions evaluation, which are valid for general anisotropic behavior meanwhile mathematical degeneracies are allowed. The accuracy and robustness of the proposed method is illustrated by solving some examples previously presented in the literature. This approach is further applied to study the influence of solids anisotropy on the contact problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.