Abstract

Early studies on annular sector plate vibrations were focused on two-dimensional theories, such as the classical plate theory and the first- and the higher-order shear deformation plate theories. These plate theories neglect transverse normal deformations and generally assume that a plane stress state of deformation prevails in the plate. These assumptions may be appropriate for thin plates. In this paper, free vibration of thick functionally graded annular sector plates with simply supported radial edges on a two-parameter elastic foundation, based on the three-dimensional theory of elasticity, using differential quadrature method for different circular edge conditions including simply supported-clamped, clamped–clamped, and free-clamped is investigated. A semi-analytical approach composed of differential quadrature method and series solution is adopted to solve the equations of motion. The material properties change continuously through the thickness of the plate, which can vary according to a power law, exponentially, or any other formulations in this direction. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.