Abstract

Abstract The exponential and power law functionally graded material(FGM) theory is reformulated considering the refined shear and normal deformation theory. This theory has ability to capture the both normal deformation effect and exponential and power law function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported plates on Pasternak elastic foundation. Numerical solutions of vibration analysis of FGM plates are presented using this theory to illustrate the effects of power law index and 3-D theory of exponential and power law function on natural frequency. The relations between 3-D and 2-D higher-order shear deformation theory are discussed by numerical results. Further, effects of (i) power law index, (ii) side-to-thickness ratio, and (iii) elastic foundation parameter on nondimensional natural frequency are studied. To validate the present solutions, the reference solutions are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call