Abstract
3D flower-like hierarchical mesoporous Bi4O5I2/MoS2 Z-scheme layered heterojunction photocatalyst was fabricated by oil bath and hydrothermal methods. The heterojunction with narrow band gap of ∼1.95 eV extended the photoresponse to near-infrared region, which showed obvious photothermal effect due to the introduction of MoS2 with broad spectrum response. MoS2 nanosheets were anchored onto the surface of flower-like hierarchical mesoporous Bi4O5I2 nanosheets, thereby forming efficient layered heterojunctions, the solar-driven photocatalytic efficiency in degradation of highly toxic dichlorophenol and reduction of hexavalent chromium was improved to 98.5% and 99.2%, which was ∼4 and 7 times higher than that of the pristine Bi4O5I2, respectively. In addition, the photocatalytic hydrogen production rate reached 496.78 μmol h−1 g−1, which was ∼6 times higher than that of the pristine Bi4O5I2. The excellent photocatalytic performance can be ascribed to the promoted photothermal effect, as well as, the formation of compact Z-scheme layered heterojunctions. The 3D flower-like hierarchical mesoporous structure provided adequate surface active-sites, which was conducive to the mass transfer. Moreover, the high stability of the prepared photocatalyst further promoted its potential practical application. This strategy also provides new insights for fabricating layered Z-scheme heterojunctions photocatalysts with highly photothermal-photocatalytic efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.