Abstract

For electrochemical splitting of water, highly active and non-precious metal electrocatalysts towards the oxygen evolution reaction (OER) are direly needed to address the cost and stability issues. Herein, polypyrrole (PPy) with 3D flower-like structure has been prepared to obtain N-doped porous carbon sheets (N–C) and to implant with cobalt oxides (Co3O4) via simple and cost-effective hydrothermal reaction. Benefitting from the 3D flower-like porous carbon structure, Co3O4/N–C demonstrates enlarged surface area replenished with more electrocatalytic active sites. What's more, Co3O4 nanoparticles are evenly dispersed onto the N-doped carbon surface which effectively prevents their aggregation and detachment. These exclusive structural features render amazing catalytic activity for Co3O4/N–C towards OER with an onset potential of ~1.31 V (vs RHE), low overpotential of 120 mV at 10 mA cm−2 and a Tafel slope of only 33 mV dec−1 in basic media. This work presents a simple approach to meet an ideal catalytic material with better morphology and advantageous properties for the possible energy and environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call