Abstract

Ce–Zr–Cu mixed oxide systems, with different contents of ZrO2 and CuO, were prepared by slow co-precipitation method, leading to the formation of materials with a flower-like morphology. It was evaluated both the role of CuO loading (3–7wt%), by maintaining constant the amount of ZrO2 (7wt%), and the role of ZrO2 (2–10wt%) with a fixed amount of CuO (7wt%). The prepared catalysts were characterized by means of ICP-OES, SEM, N2 physisorption, quantitative XRD, H2-TPR, and XPS. Their catalytic performances in the preferential oxidation of CO in excess of H2 (CO-PROX) were evaluated, in the 40–190°C temperature range. Characterization and catalytic results showed that an optimum Zr/Ce molar ratio and CuO loading are required to attain the best catalytic performance over the studied nanostructured Ce/Zr/Cu oxide system. Characterization results revealed that, regardless of the sample composition, all of them presented similar flower-like morphology and textural properties. Instead, the catalyst composition determined the crystalline phases formed, their reducibility and surface distribution. The catalyst containing an intermediate ZrO2 loading (7wt%) and the highest studied CuO amount (7wt%), FCZCu77, showed the higher fraction of undetectable CuO from XRD, that is the highest proportion of highly dispersed Cu species also observed from H2-TPR. These characteristics justify how FCZCu77 catalyst exhibited a quite higher catalytic activity than the others samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.