Abstract

Ultrasonic metal welding (UMW) has been widely applied as a high throughput solid-state joining technology for multilayers of sheet metal. During a typical UMW process, multilayer work materials are mechanically compressed by a knurl-patterned horn (also known as a sonotrode) onto an anvil tool, and a simultaneous in-plane sliding is applied to the horn at an ultrasonic frequency (20 kHz or higher) to help form the weld at the material interfaces. There is a great challenge in modeling and simulating the dynamic behavior of the work material and the whole weld formation process is subject to ultrasonic mechanical loadings imposed by the knurl-patterned horn tool. In this work, finite element (FE) models are developed to simulate the multilayer UMW process using knurl-patterned tools by directly applying the ultrasonic vibration as a model input. For a short weld duration of 0.1∼0.5 s, a high-fidelity FE modeling approach is developed using ABAQUS/Explicit to simulate the dynamic material response under the 20 kHz horn vibration. For an extended long welding duration of approximately 1.0 s, a computationally efficient hybrid approach is developed using both ABAQUS/Explicit and DEFORM-3D in order to leverage the strengths of each software package. The developed models are validated using experimental data of dynamic welding force, temperature, and weld geometry from in-situ process measurements of UMW. The 3D FE models developed in this study are the most comprehensive solution to date to simulate the complex material response subject to UMW process conditions and provide engineering guidance for the design of UMW applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.