Abstract
The chapter studies a 3D fingerprint reconstruction technique based on multi-view touchless fingerprint images. This technique offers a solution for 3D fingerprint image generation and application when only multi-view 2D images are available. However, the difficulties and stresses of 3D fingerprint reconstruction are the establishment of feature correspondences based on 2D touchless fingerprint images and the estimation of the finger shape model. In this chapter, several popular used features, such as scale invariant feature transformation (SIFT) feature, ridge feature and minutiae, are employed for correspondences establishment. To extract these fingerprint features accurately, an improved fingerprint enhancement method has been proposed by polishing orientation and ridge frequency maps according to the characteristics of 2D touchless fingerprint images. Therefore, correspondences can be established by adopting hierarchical fingerprint matching approaches. Through an analysis of 440 3D point cloud finger data (220 fingers, 2 pictures each) collected by a 3D scanning technique, i.e., the structured light illumination (SLI) method, the finger shape model is estimated. It is found that the binary quadratic function is more suitable for the finger shape model than the other mixed model tested in this chapter. In our experiments, the reconstruction accuracy is illustrated by constructing a cylinder. Furthermore, results obtained from different fingerprint feature correspondences are analyzed and compared to show which features are more suitable for 3D fingerprint images generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.