Abstract

Cold rotary forging is an advanced but complicated metal forming technology with continuous local plastic deformation. Investigating the wear is significant for effectively predicting the life of the dies and improving the workpiece surface quality. This paper is aimed to use the FE method to predict the wear response over the surfaces of the dies and the workpiece in cold rotary forging. For this purpose, a 3D elastic-plastic dynamic explicit FE model of cold rotary forging of 20CrMnTi alloy is developed using the FE software ABAQUS/Explicit and its validity is verified theoretically and analytically. Based on this valid 3D FE model, a systematic study has first been conducted, modeling and explaining the contact pressure and slip distance response. Then, the wear response that occurs at the surfaces of the dies and the workpiece is achieved. Finally, the effect of the process parameters, rotational speed n of the upper die, feed rate v of the lower die, outer/inner diameter of the ring workpiece, on the wear response is revealed. The results of this research help us better understand the complicated wear mechanisms in cold rotary forging. Moreover, the modeling methods proposed in this paper have the general significance to study the wear problems in other complicated metal forming processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call