Abstract
Various applications have been developed in facial research to aid the recognition of personal attributes, analysis of race, and personal authentication for the security industry and other research fields. Thus, it is possible to identify the differences in facial shape based on place of birth or country. The present study analyzes facial shape using scanned 3D facial images and investigates ways to extract facial landmarks from the 3D facial images. The detection of the facial landmark requires the normalization of the facial scale and position among in the 3D image data to analyze the facial shape. Therefore, it is difficult to obtain accurate facial landmarks from 3D facial images. Our method decomposes the task into the following three parts: (a) conversion of data from the 3D facial image to a 2D image, (b) extraction of facial landmarks from the 3D image using Convolutional Neural Network (CNN), (c) inversion of the identified facial landmarks from 2D to 3D images. In experiments, we compared the accuracy of this model for facial landmark detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.