Abstract

We propose a person-dependent, manifold-based approach for modeling and tracking rigid and nonrigid 3D facial deformations from a monocular video sequence. The rigid and nonrigid motions are analyzed simultaneously in 3D, by automatically fitting and tracking a set of landmarks. We do not represent all nonrigid facial deformations as a simple complex manifold, but instead decompose them on a basis of eight 1D manifolds. Each 1D manifold is learned offline from sequences of labeled expressions, such as smile, surprise, etc. Any expression is then a linear combination of values along these 8 axes, with coefficient representing the level of activation. We experimentally verify that expressions can indeed be represented this way, and that individual manifolds are indeed 1D. The manifold dimensionality estimation, manifold learning, and manifold traversal operation are all implemented in the N-D tensor voting framework. Using simple local operations, this framework gives an estimate of the tangent and normal spaces at every sample, and provides excellent robustness to noise and outliers. The output of our system, besides the tracked landmarks in 3D, is a labeled annotation of the expression. We demonstrate results on a number of challenging sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.