Abstract

There are multiple challenges in face detection, including illumination conditions and diverse poses of the user. Prior works tend to detect faces by segmentation at pixel level, which are generally not computationally efficient. When people are sitting in the car, which can be regarded as single face situations, most face detectors fail to detect faces under various poses and illumination conditions. In this paper, we propose a simple but efficient approach for single face detection. We train a deep learning model that reconstructs face directly from input image by removing background and synthesizing 3D data for only the face region. We apply the proposed model to two public 3D face datasets, and obtain significant improvements in false rejection rate (FRR) of 4.6% (from 4.6% to 0.0%) and 21.7% (from 30.2% to 8.5%), respectively, compared with state-of-art performances in two datasets. Furthermore, we show that our reconstruction approach can be applied using 1/2 the time of a widely used real-time face detector. These results demonstrate that the proposed Reconstruction ConNet (RN) is both more accurate and efficient for real-time face detection than prior works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.