Abstract

Three-dimensional (3D) computational fluid dynamics (CFD) simulations were performed to study solids flow dynamics and solids back-mixing behavior in a screw reactor (designed for thermal conversion of dry biomass particles) based on the Eulerian-Eulerian method. Simulation results were compared against experimental data with respect to filling degree and mean residence time of particles. The mean deviations for filling degree and for mean residence time between simulation and experiment were about 0.01 and 11.4 s, respectively, which shows that the model is reasonably accurate in predicting solids flow behavior in the screw reactor. The solids flow dynamics inside the reactor were discussed. The solids residence time distribution (RTD) was calculated and the degree of solids back-mixing in the forward transportation direction of the reactor was analyzed. It was found that solids being flung over the shaft and solids back-leakage, resulting from the low solids forward transportation velocity at the clearance between the flight and the bottom shell of the screw reactor, were responsible for solids back-mixing. The degree of solids back-mixing can be reduced at higher screw rotating speeds when keeping inlet mass flow rate of solids constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.