Abstract

Real-time studies of biomarkers for neurological disorders present significant opportunities for diagnosing and treating related diseases, and fluorescent probes offer a promising approach to brain imaging. However, intracerebral fluorescence imaging is often limited by blood-brain barrier permeability and penetration depth. Moreover, only very few probes have rapid intracerebral metabolic properties, which are critical for in vivo imaging. Here, we developed a novel class of fluorescent dyes with two-photon excitation and near-infrared (NIR) emission (920/705 nm). The representative WAPP-4 probe exhibits a large Stokes shift (Δλ = 324 nm in ethanol) and excellent blood-brain barrier permeability. Notably, using WAPP-4, we achieved in vivo 3D dynamic imaging of Aβ plaques in the brains of living mice with Alzheimer's disease (AD). In addition, super-resolution imaging showed that WAPP-4 could effectively characterize the distribution and shape of Aβ plaques in isolated brain slices. This study demonstrates that newly developed fluorescent dyes with large Stokes shifts and blood-brain barrier permeability enable real-time imaging of amyloid plaques, which will contribute to the development of other valuable tools for near-infrared imaging and super-resolution imaging in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call