Abstract

Abstract The 2023 Turkey earthquake sequence involved unexpected ruptures across numerous fault segments. We present 3D dynamic rupture simulations to illuminate the complex dynamics of the earthquake doublet. Our models are constrained by observations available within days of the sequence and deliver timely, mechanically consistent explanations of the unforeseen rupture paths, diverse rupture speeds, multiple slip episodes, heterogeneous fault offsets, locally strong shaking, and fault system interactions. Our simulations link both earthquakes, matching geodetic and seismic observations and reconciling regional seismotectonics, rupture dynamics, and ground motions of a fault system represented by 10 curved dipping segments and embedded in a heterogeneous stress field. The Mw 7.8 earthquake features delayed backward branching from a steeply branching splay fault, not requiring supershear speeds. The asymmetrical dynamics of the distinct, bilateral Mw 7.7 earthquake are explained by heterogeneous fault strength, prestress orientation, fracture energy, and static stress changes from the previous earthquake. Our models explain the northward deviation of its eastern rupture and the minimal slip observed on the Sürgü fault. 3D dynamic rupture scenarios can elucidate unexpected observations shortly after major earthquakes, providing timely insights for data-driven analysis and hazard assessment toward a comprehensive, physically consistent understanding of the mechanics of multifault systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.