Abstract

With the development of 3D laser scanning techniques and depth sensors, 3D dynamic point clouds have attracted increasing attention as a representation of 3D objects in motion, enabling various applications such as 3D immersive tele-presence, gaming and navigation. However, dynamic point clouds usually exhibit holes of missing data, mainly due to the fast motion, the limitation of acquisition and complicated structure. Leveraging on graph signal processing tools, we represent irregular point clouds on graphs and propose a novel inpainting method exploiting both intra-frame self-similarity and inter-frame consistency in 3D dynamic point clouds. Specifically, for each missing region in every frame of the point cloud sequence, we search for its self-similar regions in the current frame and corresponding ones in adjacent frames as references. Then we formulate dynamic point cloud inpainting as an optimization problem based on the two types of references, which is regularized by a graph-signal smoothness prior. Experimental results show the proposed approach outperforms three competing methods significantly, both in objective and subjective quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.