Abstract

Employing a dynamic model of the railway wagon in three dimensions, this paper presents the results of dynamic wheel–rail forces under the presence of track irregularities. A mathematical model of the wagon system is developed using dynamic equations of the components, taking into account the vertical (bounce), pitch and roll motions of the system. The model examines the dynamics of the wagon system under arbitrary rail irregularities. The spectra of rail surface irregularities are fed into the vehicle model to extract the time histories of dynamic forces between the wheel and the rail. Using the irregularity spectra of left/right rails, vibration of the wheelsets is studied for the bounce–roll motions. The dynamic contact forces between wheels and rails are determined for three examples of the measured irregularities. Moreover, three V-shape defects are modelled as examples of the singular defects on rail surface. The results of dynamic simulations confirm the large amounts of impact forces due to the presence of rail irregularities, particularly for the cases with much unevenness between the left/right profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call