Abstract
Three-dimensional (3-D) elastodynamic interaction between a penny-shaped crack and a thin elastic interlayer joining two elastic half-spaces is investigated by an improved boundary integral equation method or boundary element method. The penny-shaped crack is embedded in one of the half-spaces, perpendicular to the interlayer and subjected to a time-harmonic tensile loading on its surfaces. Effective “spring-like” boundary conditions are applied to approximate the effects of the thin layer in the mathematical model. Integral representations for the displacement and the stress components are derived by using modified Green’s functions, which satisfy the “spring-like” boundary conditions identically. Then, application of the dynamic loading condition on the crack-surfaces results in a boundary integral equation (BIE) for the crack-opening-displacement over the crack-surfaces only. A solution procedure is developed for solving the BIE numerically. Numerical results for the mode-I dynamic stress intensity factor (SIF) are presented and discussed to show the variations of the mode-I dynamic SIF with the angular coordinate of the crack-front points, the dimensionless wave number, the material mismatch and the crack-layer distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.