Abstract

This paper deals with the generalized coupled thermoelastic solution for disks with constant thickness. It is a sequel to the authors’s previous work in which refined 1D Galerkin finite element models with 3D-like accuracies are developed for theories of coupled thermoelasticity. Use of the reduced models with low computational costs may be of interest in a laborious time history analysis of the dynamic problems. In this paper, the developed models are applied and evaluated for a 3D solution of the dynamic generalized coupled thermoelasticity problem in the disk subjected to thermal shock loads. Comparison of the obtained result with the results available in the literature verified the proposed finite element models are quite efficient with very high rate of convergence and able to provide results with analytical accuracy. In addition, propagation of the thermoelastic waves, the wave reflection from the boundaries and the Poisson effect in an axisymmetric and asymmetric disk problem are represented as contour plots to demonstrate 3D capabilities of the models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.