Abstract

Abstract Ridge keel punch through tests were simulated in 3D. In simulations unconsolidated ridge keel was modelled as a rubble pile of loose ice blocks. Combined finite–discrete element method (FEM–DEM) with rigid discrete elements representing ice blocks was used. Simulations were run in full scale. In total 47 simulations were run with various friction coefficients and keel depths. The failure process of simulated rubble piles was analysed and the shear strength of the rubble pile was derived from results. The effect of rubble porosity, keel depth and friction on shear strength of the pile was also analysed. The simulation results were compared to laboratory and full-scale punch through tests of unconsolidated ice rubble. Shear strength values achieved from simulations were in range for experimental results. Failure process was observed to be similar to laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.