Abstract

Direct Ink Writing (DIW) has demonstrated great potential as a versatile method to 3D print multifunctional structures. In this work, we report the implementation of hydrogel meta-structures using DIW at room temperature, which seamlessly integrate large specific surface areas, interconnected porous characteristics, mechanical toughness, biocompatibility, and water absorption and retention capabilities. Robust but hydrophobic polymers and weakly crosslinked nature-origin hydrogels form a balance in the self-supporting ink, allowing us to directly print complex meta-structures without sacrificial materials and heating extrusion. Mechanically, the mixed bending or stretching of symmetrical re-entrant cellular lattices and the unique curvature patterns are combined to provide little lateral expansion and large compressive energy absorbance when external forces are applied on the printed meta-structures. In addition, we have successfully demonstrated ear, aortic valve conduits and hierarchical architectures. We anticipate that the reported 3D meta-structured hydrogel would offer a new strategy to develop functional biomaterials for tissue engineering applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.