Abstract
This paper presents a new fall detection method of elderly people in a room environment based on shape analysis of 3D depth images captured by a Kinect sensor. Depth images are pre-processed by a median filter both for background and target. The silhouette of moving individual in depth images is achieved by a subtraction method for background frames. The depth images are converted to disparity map, which is obtained by the horizontal and vertical projection histogram statistics. The initial floor plane information is obtained by V disparity map, and the floor plane equation is estimated by the least square method. Shape information of human subject in depth images is analyzed by a set of moment functions. Coefficients of ellipses are calculated to determine the direction of individual. The centroids of the human body are calculated and the angle between the human body and the floor plane is calculated. When both the distance from the centroids of the human body to the floor plane and the angle between the human body and the floor plane are lower than some thresholds, fall incident will be detected. Experiments with different falling direction are performed. Experimental results show that the proposed method can detect fall incidents effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.