Abstract

The static simulation of weft knitting can be efficiently realized by graphics simulation techniques, but there still remains a challenge for mechanical models. The lack of practical mechanical models significantly limit the realistic deformation behaviors of complex cable stitches, which lead to a great different between the simulation effect and the actual fabric. In order to obtain the deformation behavior and volumetric performance of cable stitch, loop models were built based on an improved particle system in this work. Compared with plain weft knitted, the offset value of bonding points of cable stitches were measured. By analyzing the relationship between the deformation of loops and the displacement of the particles, the deformation behavior of cable stitch was simulated. Velocity-Verlet integration was introduced to simulate cable stitches and the stable results were obtained. The results show that these models and algorithm displayed the accurate deformation behavior of cable stitches, as demonstrated by qualitative comparisons to measure the deformations of actual samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.