Abstract

The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.

Highlights

  • Medical images have varied characteristics depending on the target organ and the suspected diagnosis

  • Besides constraints in acquiring enough training samples, class imbalance pervades in the medical imaging domain, whereby samples of the diseased patients are hard to come by. This issue is further exacerbated in problems related to the tumor or lesion segmentation because the sizes of tumors or lesions are usually small when compared to the whole scan volume

  • This is further strengthened by the recent successes of deep learning models trained on large datasets like the ImageNet

Read more

Summary

Introduction

Medical images have varied characteristics depending on the target organ and the suspected diagnosis. With decreasing computational costs and powerful graphics processing (units (GPUs) available, it has become possible to analyze three-dimensional (3D) medical images, such as CT, DTI, fMRI, Ultrasound and MRI scans [14] using 3D deep learning. These scans give detailed three-dimensional images of human organs and can be used to detect infection, cancers, traumatic injuries and abnormalities in blood vessels and organs. To the best of our knowledge, this is the first review paper of 3D deep learning on medical images

Materials and Methods
January the third search was performed on 1 July
A Typical Architecture of 3D CNN
Breakthroughs in CNN Architectural Advances
Segmentation
Methods
Classification
Detection and Localization
Registration
Challenges and Conclusions
Background

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.