Abstract

Structural plane is different from common crack, as it is often under pressure and has non-linear normal and tangential deformation behavior. This paper simulates the propagation of non-linear deformation structural plane by 3D displacement discontinuity method (DDM). Through least square regression of the elements near the tip, the stress intensity factor (SIF) of the tip is obtained. Maximum energy release rate criterion is adopted to be the fracture criterion in this paper, assuming the propagation occurred in the normal plane of the front edge, KI is modified to consider the effect of mode Ⅲ crack. The structural plane model is considered as a hyperbolic non-linear model, the Barton-Bandis model is adopted as the normal deformation model, the Kulhaway model is adopted as the tangential deformation model, and the Mohr-Coulomb criterion is adopted as the shear strength criterion. The result shows that the propagation direction is along the direction of the load, DDM could efficiently trace this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.