Abstract
A three-dimensional (3D) micromechanics-based evolutionary damage model is proposed to predict the effective elastic behavior of continuous fiber-reinforced brittle matrix composites with microcracks and imperfect interfaces. Eshelby’s tensor for a circular cylindrical inclusion with slightly weakened interface is adopted to model continuous fibers with imperfect interfaces. The nucleation of microcracks is simulated by employing the continuum damage model. A multilevel damage modeling process in accordance with Weibull’s probabilistic function is incorporated into the micromechanical framework to describe the sequential evolution of imperfect interfaces in the composites. Numerical examples corresponding to uniaxial loadings in the longitudinal and transverse directions are solved to illustrate the potential of the proposed damage model. Furthermore, the present prediction is compared with available experimental data in the literature to highlight the applicability of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.