Abstract
De novo vascularization of implantable tissue and whole organ constructs has been a significant challenge in the field of tissue engineering; the use of endothelial cell populations for this task is constrained by the cell population's limited regeneration capacity and potential for loss of function. Thus, there is a need for a stem-cell population that may be induced into an endothelial cell phenotype reliably. Adipose derived stem cells (ADSCs) are multipotent cells that can be readily isolated from donor fat and may have the potential to be readily induced into endothelial cells. The ability to stimulate endothelial differentiation of these cells has been limited in standard 2D culture. We hypothesized that 3D culture would yield better differentiation. To study the influence of cell density and culture conditions on the potential of ADSCs to differentiate into an endothelial-like state, we seeded these cells types within a 3D cell-adhesive, proteolytically degradable, peptide-modified poly(ethylene-glycol) (PEG) hydrogel. ADSCs were either cultured in basal media or pro-angiogenic media supplemented with 20ng/mL of VEGF in 2D and then encapsulated at low or high densities within the PEG-based hydrogel. These encapsulated cells were maintained in either basal media or pro-angiogenic media. Cells were then isolated from the hydrogels and cultured in Matrigel to assess the potential for tubule formation. Our work shows that maintenance of ADSCs in a pro-angiogenic medium in 2D monoculture alone does not result in any CD31 expression. Furthermore, the level of CD31 expression was affected by the density of the cells encapsulated within the PEG-based hydrogel. Upon isolation of these cells, we found that these induced ADSCs were able to form tubules within Matrigel, indicative of endothelial function, while ADSCs cultured in basal medium could not. This finding points to the potential for this stem-cell population to serve as a safe and reliable source of endothelial cells for tissue engineering and regenerative medicine purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.