Abstract

Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone. Melatonin (MT) has attracted attention in recent years as an excellent factor for promoting cell viability and tissue repair. In this study, porous scaffolds were prepared by cryogenic printing with poly(lactic-co-glycolic acid) and ultralong hydroxyapatite nanowires. The hierarchical pore size distribution of the scaffolds was evaluated by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Sleep-inspired small extracellular vesicles (MT-sEVs) were then obtained from MT-stimulated cells and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-inorganic pyrophosphate (DSPE-PEG-PPi) was used to modify the membrane of MT-sEVs to obtain PPi-MT-sEVs. RNA sequencing was performed to explore the potential mechanisms. The results demonstrated that PPi-MT-sEVs not only enhanced cell proliferation, migration and angiogenesis, but also regulated the osteogenic/adipogenic fate determination and M1/M2 macrophage polarization switch in vitro. PPi-MT-sEVs were used to coat scaffolds, enabled by the capacity of PPi to bind to hydroxyapatite, and computational simulations were used to analyze the interfacial bonding of PPi and hydroxyapatite. The macrophage phenotype-modulating and osteogenesis–angiogenesis coupling effects were evaluated in vivo. In summary, this study suggests that the combination of hierarchical porous scaffolds and PPi-MT-sEVs could be a promising candidate for the clinical treatment of bone defects.Graphical abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.