Abstract

— The three-dimensional crustal velocity structure in the area of the northwestern Greek mainland was determined by P-wave travel time inversion, applying a two-step tomography procedure. The data set consists of the travel-time residuals of 584 well located earthquakes. In order to improve the initial (reference) velocity model, before the inversion of travel times, the “minimum 1-D” model was determined. Several tests were conducted to estimate model stability and hypocenter uncertainties. The velocity distribution in the shallow layers (4 and 7 km) is strongly affected by the crustal thickness variation and the complex tectonics. A first, well-defined velocity discontinuity appears at a depth of 3–6 km, along the Hellenides Mountain chain. A second low velocity anomaly is detected at a depth of 9–12 km and may be connected with the Alpidic orogenesis. Another interesting feature appears beneath the Amvrakikos Gulf (horstgraben structure), where relatively low velocities (<6.0 km-1) appear to a depth of 20 km. Finally, a well-pronounced velocity boundary is found at a depth of 16 km. In general, low velocities are predominant along the Dinarides-Hellenides Mountain chain, rather typical for the upper crust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call