Abstract

A new inverse heat conduction (IHC) framework for 3D crack-like damage imaging reconstruction is proposed in this paper. First, the basic idea to use the IHC for 3D damage imaging is discussed and formulated. The proposed IHC includes three major components: forward thermal analysis solver, adjoint method for efficient sensitivity analysis, and conjugate gradient method with constraints for optimal inverse solutions. Following this, the proposed IHC framework is applied to a simple one dimensional problem to illustrate the key steps. Next, two application examples (one for isotropic and homogeneous material and one for anisotropic and heterogeneous material) in 3D are investigated. Special focuses on the detectability, convergence, and robustness are discussed in detail. Finally, several conclusions and future work are drawn based on the proposed study and numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.